
1D2G - Numerical solution of the neutron diffusion equation

Y. Danon

Draft: 2/16/2019

1 Overview

A simple numerical solution of the neutron diffusion equation in one dimension and two energy
groups was implemented. Both fast and thermal fluxes, and the multiplication factor of the system
are solved for. The implementation allows to divide the geometry to several regions and use
different meshing (number of grid points) in each region. One example is a core and reflector,
where the thermal flux peaking in the reflector can be observed. The treatment of the diffusion
term (Laplacian) allow geometry of slab, semi-cylinder and sphere.

1.1 History

The derivation and code were developed as a final project for senior undergraduate course in
numerical computing that I took back in 1988. The original code was written in Pascal (specifically
Turbo Pascal) which was an upcoming programming language at that time. Later I used it in
Physics of Nuclear Reactor course at RPI as an example for a numerical solution of the diffusion
equation. The at part of HW problem the solution was compared to simple analytic problems. for
implementation in the course tt was rewritten in MathCad and JavaScript.
The document is provided as a documentation of the methods used in the implementation.

2 Solution method

We start by using the one dimension (1-D) two group (2-G) diffusion equations derived in the class
notes:

Fast: −∇D1∇φ1 + ΣR1φ1 =
1

k
(ν1Σf1φ1 + ν2Σf2φ2) (1)

Thermal: −∇D2∇φ2 + Σa2φ2 = Σs1→2φ1 (2)

The overall approach was described in the class notes and will be repeated here. For convenience
we first write the equations using operators:

L1 = −∇D1∇+ ΣR1 (3)

L2 = −∇D2∇+ Σa2 (4)

We also define the source term as:

S1 = ν1Σf1φ1 + ν2Σf2φ2 (5)

S2 = Σs1→2φ1 (6)

1

The diffusion equations can be rewritten as:

L1φ1 =
1

k
S1 (7)

L2φ2 = S2 (8)

2.1 Iterations

The method of solution is a variation of the simple source iteration (also known as power method).
This is an iterative solution solves for the multiplication factor k and the flux shapes φ1(r) and
φ2(r). Since this is a 1-D solution, we divide the spatial direction r to N nodes (or N −1 intervals)
from r0 to rN . If needed the extrapolation length can easily be added by making the core size
larger.

1. Guess an initial solution (iteration zero) k0, φ1(r)0 and φ2(r)0

2. Set iteration index i = 1

3. Calculate Si−1
1 using Si−1

1 = ν1Σf1φ
i−1
1 + ν2Σf2φ

i−1
2

4. Solve for φ1(r)i using L1φ
i
1 = 1

ki−1S
i−1
1

5. Calculate Si−1
2 using Si−1

2 = Σs1→2φ
i
1

6. Solve for φ2(r)i using L2φ
i−1
2 = Si−1

2

7. At this point we have new fluxes φ1(r)i and φ2(r)i

8. To solve for ki use L1φ
i
1 = 1

ki−1S
i−1
1 and note that by integration we get:

ki =

∫ rN
0 Si1(r)dr

1
ki−1

∫ rN
0 Si−1

1 (r)dr
(9)

9. Using the values for iteration i the process can repeat from step 3 until some convergence
criteria is met. in this implementation we use:∣∣∣ki − ki−1

ki

∣∣∣100 < ε (10)

Where ε is a convergence criteria on k (for example 0.1 %)

2.2 Difference equation

Now that the iteration process is defined a method to solve for the spatial flux distribution is
needed. This so called difference equation will solve the flux in equations 7 and 8. First write a
generic 1-D diffusion equation:

−∇D1∇φ(r) + Σa(r)φ(r) = S(r) (11)

The leakage term in 1-D can be written as:

−∇D1∇φ(r) = − 1

rρ

[d
dr

(
rρD(r)

dφ(r)

r

)]
(12)

2

In this notation ρ = 0 is a slab , ρ = 1 resembles infinite cylinder (z-axis is missing), and ρ = 2 is
for a sphere.
The problem is defined between 0 ≤ r ≤ a and the region is divided to N nodes (N − 1 bins) such
that the bin width is ∆rk = rk+1− rk (k = 0..N − 1). Note that the bin widths are not necessarily
equal which provides some flexibility in the geometry description.
Equation 12 can thus be written:

d

dr

(
rρD(r)

dφ(r)

r

)
= (Σaφ(r)− S(r)) rρ (13)

To get a difference equation we integrate from rk− 1
2

to rk+ 1
2

In this case k = 1, 2, ..., N − 1, we will

deal with the boundary conditions of k = 0 and k = N in the next section. In this notation we use
rk+ 1

2
= rk + ∆rk

2 and rk− 1
2

= rk − ∆rk−1

2

rρD(r)
dφ(r)

r

∣∣∣
r
k+1

2

− rρD(r)
dφ(r)

r

∣∣∣
r
k− 1

2

=

∫ r
k+1

2

r
k− 1

2

(Σaφ(r)− S(r)) rρdr (14)

The right term is approximated as constant in each bin:∫ r
k+1

2

r
k− 1

2

(Σaφ(r)− S(r)) rρdr ≈ (Σa(rk)φ(rk)− S(rk)) r
ρ
k

∆rk −∆rk−1

2
(15)

for the derivatives in 14 we used the following approximations:

dφ(r)

dr

∣∣∣
r
k+1

2

≈ φ(rk+1)− φ(rk)

rk+1 − rk
=
φk+1 − φk

∆rk
(16)

dφ(r)

dr

∣∣∣
r
k− 1

2

≈ φ(rk)− φ(rk−1)

rk − rk−1
=
φk − φk−1

∆rk−1
(17)

The results can now be placed back into 14:

rρ
k+ 1

2

Dk+ 1
2

φk+1 − φk
∆rk

− rρ
k− 1

2

Dk− 1
2

φk − φk−1

∆rk−1
= (Σakφk − Sk) r

ρ
k

∆rk −∆rk−1

2
(18)

This equation can be rearranged to:

akφk−1 + bkφk + ckφk+1 = Sk (19)

where:

ak =
rρ
k− 1

2

Dk− 1
2

∆rk−1

2

(∆rk + ∆rk−1)rρk
(20)

ck =
rρ
k+ 1

2

Dk+ 1
2

∆rk

2

(∆rk + ∆rk−1)rρk
(21)

bk = ak + ckΣak (22)

3

in this notation the diffusion coefficient as a function node number:

Dk+ 1
2

=
1

2
(Dk +Dk+1) (23)

Dk− 1
2

=
1

2
(Dk +Dk−1) (24)

and similarly for r

rk+ 1
2

=
1

2
(rk + rk+1) (25)

rk− 1
2

=
1

2
(rk + rk−1) (26)

2.3 Boundary conditions

We use two boundary conditions (BC) at the center of the core (implies symmetry) and at the
dimension boundary. In this case the two boundary conditions are:

φ(rN) = 0 (27)

dφ(r)

dr

∣∣∣
r=0

= 0 (28)

The first condition remove the last equation (N) and equation N − 1 becomes:

aN−1φN−2 + bN−1φN−1 = SN−1 (29)

To derive the derivative BC we repeat the integration in equation 14, but this time with the interval
0 to rk+ 1

2
. For the case of ρ = 0 (rρ = 0)we get:∫ r

k+1
2

0
(Σaφ(r)− S(r)) rρ ≈ (Σa0φ0 − S0)

∆r0

2
(30)

rρD(r)
dφ(r)

r

∣∣∣
r
k+1

2

− rρD(r)
dφ(r)

dr

∣∣∣
r0

=
dφ(r)

dr

∣∣∣
r
k+1

2

≈ D0
φ1 − φ0

∆r0
(31)

Thus the diffusion equation reduces to:

D0
φ1 − φ0

∆r0
= (Σa0φ0 − S0)

∆r0

2
(32)

rearranging to the from b0φ0 + c0φ1 = S0 results in:

b0 =
2D0

∆r2
0

+ Σa0 (33)

c0 =
2D0

∆r2
0

(34)

for the case of ρ > 0 we can approximate r = 0 for this BC thus rρ = 0. which results in:

D0
φ1 − φ0

∆r0
= S0 (35)

4

and thus:

b0 = 1 (36)

c0 = 1 (37)

When placed in matrix notation we get:

b0 c0 0 ..
a1 b1 c1 0 ..
0 a2 b2 c2 0 ..
:
:

.. 0 aN−1 bN−1 cN−1





φ0

φ1

φ2

:
:

φN−1

 =



S0

S1

S2

:
:

SN−1

 (38)

In the implementation the a material matrix is created for the fast and thermal regions.

2.4 Matrix inversion

There are several ways to solve equation 38 to get the flux vector. In the implementation the
Gaussian elimination method was selected because of its simplicity and efficiency. The derivation
of the method can be found elsewhere.
The forward elimination:

h0 =
c0

b0
(39)

p0 =
S0

b0
(40)

hk =
ck

bk − akhk−1
k = 1, 2, ..., N − 1 (41)

pk =
Sk + akpk−1

bk − akhk−1
k = 1, 2, ..., N − 1 (42)

Notice that if not constructed correctly, the parameters in the matrix can cause division by zero.
Finally back substitution give the solution for the neutron flux.

φN−1 = pN−1 (43)

φk = pk + hkφk+1 k = N − 2, N − 3, ..., 0 (44)

2.5 Flux integration

In order to solve for the multiplication factor k, as described in equation 9, an integral of the flux
is needed. For simplicity trapezoid integration can be used:∫ RN

0
s1(r)dr =

1

2

N−1∑
i=0

(S1i + S1i+1)∆ri (45)

5

